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We calculate the two-body decay rates of “quirkonium” states formed from quirks that acquire
mass solely through electroweak symmetry breaking. We consider SU(N)ic infracolor with two
flavors of quirks transforming under the electroweak group (but not QCD) of the Standard Model.
In one case, the quirks are in a chiral representation of the electroweak group, while in the other
case, a vector-like representation. The differences in the dominant decay channels between “chiral
quirkonia” versus “vector-like quirkonia” are striking. Several chiral quirkonia states can decay into
the unique two-body resonance channels WH, ZH, tt̄, tb̄/bt̄, and γH, which never dominate for
vector-like quirkonia. Additionally, the channels WW , WZ, ZZ, and Wγ, are shared among both
chiral and vector-like quirkonia. Resonances of dileptons or light quarks (dijets) can dominate for
some vector-like quirkonia states throughout their mass range, while these modes never dominate for
chiral quirkonia unless the decays into pairs of gauge or Higgs bosons are kinematically forbidden.

I. INTRODUCTION

Quirks are fermions transforming under the SM gauge
group along with a new strongly-coupled “infracolor”
group SU(N)ic [1]. (Earlier ideas were also considered in
Ref. [2].) The scale of infracolor confinement, Λic, is as-
sumed to be much smaller than the masses of all quirks,
and so the infracolor-strings have an exponentially sup-
pressed rate to break. Quirks pairs produced in a collider
remain in a bound state even when produced with large
kinetic energies. This leads to several interesting collider
physics and dark matter applications [1, 3–14]. (Other
work on hidden valley models can be found in [15–17].)
Certain kinds of quirks have already been searched for at
the Tevatron by the D0 collaboration [18].

In this paper, we are mainly interested in quirks
that acquire mass through electroweak symmetry break-
ing. This is unlike the original model, Ref. [1], where
quirks acquired “vector-like” masses independently of
electroweak symmetry breaking. We are motivated in
part by the discovery that chiral quirks bound in quirky
baryons can lead to a viable asymmetric dark matter
candidate [10]. We do not, however, restrict ourselves
to the specific theory or detailed parameter choices of
[10]. Instead, we consider general SU(N)ic, and calcu-
late the meson decay rates for both chiral quirks as well
as vector-like quirks, demonstrating the experimentally
distinguishable signatures.

At this point we should emphasize that only some as-
pects of quirky physics can be calculated (or simulated)
with standard collider tools. In general, quirks can be
produced in a standard collider physics process (for us,
weak production), but then the pT of the quirks must
be shed before the quirks settle down into a low-angular-
momentum state. This “spin-down” process is in general
non-perturbative, with the resulting radiation dependent
on the relative strengths of infracolor and other couplings
of the quirks. After spin-down and energy loss, the con-
stituent quirks annihilate, causing quirky mesons to de-
cay. It is solely this last step that is our interest in this

paper.

The annihilation rate of quirky mesons is proportional
to the lowest non-vanishing radial derivative of the me-
son wavefunction at zero relative quirk displacement.
This is entirely analogous to positronium and quarko-
nium [19]. For an S state, this is |ψ(0)|2, while for a
P state, |ψ′(0)|2. At high orbital angular momentum
L, this wavefunction factor is suppressed. Ref. [1] esti-
mated the suppression factor in the annihilation proba-
bility scaling as (β/L)L+1/L, where β is the quirk rela-
tive velocity and L > 0. Therefore, instead of annihilat-
ing immediately, the quirky bound states are expected
to emit soft radiation to shed their angular momentum.1

As the quirky bound state reaches a low angular mo-
mentum state (L ∼ 1), the constituent quirks ultimately
annihilate; some quirky meson decay rates for certain
vector-like quirks have been discussed in [1, 3, 4, 14].

This paper is organized as follows. We will describe
our quirk model in Sec. II. Next, we present a qualitative
understanding of the parametric dependencies of the var-
ious decay channels in Sec. III. We present the formal-
ism to calculate the decay amplitudes in Appendix A,
along with the extensive analytical results for all of our
quirkonia decay rates in Appendices B and C. Much of
our results for neutral quirkonia can be obtained from
earlier results on heavy quarkonia [19], which we have
compared extensively. Then, we present numerical eval-
uations of our results, and discuss their implications, in
Sec. IV. Next, we calculate the decay rates for vector-
like quirkonia in Sec. V, comparing and contrasting to
the chiral quirkonia decay results. We summarize and
provide a clear explanation of which modes have “chiral
enhancement” in Sec. VI. We conclude with a discus-
sion, identifying the major signals that distinguish chiral
quirkonia from vector-like quirkonia in Sec. VII.

1 The radiation may be in the form of soft photons [5] that can be
detected as rings in the η − φ plane in colliders.
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SU(N)ic SU(2)L U(1)Y

Q N 2 0

uc N̄ 1 −1/2

dc N̄ 1 +1/2

TABLE I: Quirk quantum numbers.

II. MODEL AND SETUP

The model we consider is SU(N)ic with two flavors
in the representations given in Table I. This is the gen-
eralization of the model of Ref. [10] to N infracolors.
We assume Λic � mQ, and neglect the infracolor con-
finement contribution to the quirky meson masses. The
Lagrangian that gives mass to the quirks is simply

L = λUQHu
c + λDQH

†dc . (1)

Despite the abuse of notation (Q, uc, dc), we empha-
size that our quirks are color singlets. After electroweak
symmetry breaking, the quirks acquire masses MU,D ≡
λU,Dv. Writing the electroweak doublet as Q = (u, d),
we can write the quirks in terms of four-component Dirac
spinors U,D

U =

(
u
uc†

)
D =

(
d

dc†

)
(2)

where U,D have electric charge q = ±1/2. The quirky
mesons formed from these objects include

(UŪ), (DD̄) neutral mesons (3)

(UD̄), (DŪ) q = ±1 charged mesons . (4)

There are two interesting regions of parameter space
satisfying the requirement Λic � MU,D. One occurs
when one quirk mass is much heavier than the other,
MU � MD or MD � MU , such that there is one set of
heavy neutral mesons, one set of intermediate-mass elec-
trically charged mesons, and one of set of light mesons.
In this regime, the heavier mesons generically weak de-
cay to the lightest mesons (microscopically the heavier
quirks are weak decaying into the lighter quirks) before
the quirks themselves have time to annihilate. In this
regime, the relevant annihilation channels consist solely
of the lightest neutral mesons.

The second regime, and the main focus of this paper,
is when MU ' MD. When the two flavors of quirks are
very nearly degenerate in mass, all of the mesons given in
Eqs. (3),(4) are virtually stable against weak decay. All
of the quirk pairs within the mesons therefore annihi-
late well before the kinematically-suppressed weak decay
occurs. This leads to four distinct “towers” of mesons:
two sets of neutral mesons and two sets of (oppositely)
charged mesons.

The neutral mesons (UŪ) and (DD̄) can mix with each
other through infragluon box diagrams that are superfi-
cially similar to the W -box diagrams within the SM that

lead to mixing among the neutral mesons of QCD. How-
ever, unlike QCD, all of the quirks are heavy, while the
gauge bosons being exchanged in the box diagram are
massless. This small mixing is an interesting effect for
further study. Our meson decay rates are invariant un-
der U ↔ D, and we simply compute (QQ̄) as if it were
an exact (UŪ) or (DD̄) eigenstate. In practice, there
may be either a small admixture between these states, in
which case the mixing angle cancels out in our branching
ratio calculations, or otherwise for maximal mixing, we
treat (QQ̄) as the [(UŪ) + (DD̄)]/

√
2 eigenstate.

The quirkonium bound state confining potential in the
Coulombic approximation is [10]

V (r) = − ᾱ
r
, (5)

where ᾱ contains the relevant couplings for the quirks in
our model. When infracolor dominates, this is given by
ᾱ ' ᾱic ≡ C2(N)αic = (N2 − 1)/(2N)αic. The decay
widths are proportional to the meson wavefunction when
the two constituent quirks overlap. The wavefunction
factors that appear in the decay widths, for S and P
states are

|RS(0)|2 = 4

(
1

4
ᾱicM

)3

(6)

|R′P (0)|2 =
1

24

(
1

4
ᾱicM

)5

, (7)

where M is the mass of the meson of the appropriate
quirkonia state.

Implicit in evaluating the wavefunctions, Eqs. (6),(7),
we have assumed the binding energy is dominated by
the contributions from the infracolor interaction. This is
not assumed by our analytic results, which are written in
terms of the radial wavefunction at the origin. Moreover,
since our numerical results are concerned with ratios of
decay rates, the dependence on the wavefunction com-
pletely drops out of the S state quirkonia decay rates,
and is not particularly sensitive for P states, as we will
see.

Transitions between principal quantum numbers can
occur, just as in bound state problems of QED. The
transition between the n = 2 P states to the n = 1
S states is given by the Lyman-alpha electromagnetic
transition rate. This was estimated for neutral quirkonia
to be [10]

ΓL−α =
4

9
e2QαemE

3
Lα|〈0|r|1〉|2 =

1

4

(
8

81

)2

αemᾱ
4
icM,

(8)
where M is roughly the meson mass. Charged quirko-
nia have the same rate, so long as infracolor dominates
the potential, Eq. (5). As we will see, the Lyman-alpha
transition is typically faster than the annihilation rates
of P state quirkonia. There are exceptions, however, for
chiral quirkonia, which we calculate below, and discuss
the resulting final state signatures.
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III. QUALITATIVE DESCRIPTION OF
RESULTS

The formalism we used for our quirkonia decay calcu-
lations is given in Appendix A, and the complete analytic
results are given in Appendices B and C. Here, we eval-
uate the parametric scaling of the various transition and
decay rates. There are five qualitatively distinct rates
involved in quirkonia decay:

ΓL−α(P → S) ∼ αemᾱ4
icM (9)

Γ(S → g′g′) ∼ ᾱ5
icM (10)

Γ(S → SM + SM) ∼ α2
SMᾱ

3
icM

(
M2

m2

)β
(11)

Γ(P → g′g′) ∼ ᾱ7
icM (12)

Γ(P → SM + SM) ∼ α2
SMᾱ

5
icM

(
M2

m2

)β
(13)

The first rate corresponds to the Lyman-alpha electro-
magnetic transition given by Eq. (8) above. The second
rate, S → g′g′ refers to specifically the 1S0 state decaying
into a pair of infragluons. Note that the 3S1 quirkonia
state does not decay into a pair of massless gauge bosons,
due to angular momentum conservation, just like the 3S1

quarkonia state [19]. The third rate, S → SM + SM
refers to 1S0 or 3S1 state decaying into a pair of SM
particles with SM coupling αSM. The fourth and fifth
rates, P → g′g′ and P → SM + SM, refer to any of
the P states decaying into the above modes. Generally,
if the Lyman-alpha transition is possible (i.e., for any
of the P states), it dominates over the quirkonia decay
modes. The exception to this is if there is longitudinal
or Yukawa “chiral enhancement”, which can occur either
singly (β = 1) or doubly (β = 2) depending on the final
state. Double-longitudinal enhancement tends to over-
come Lyman-alpha emission when M is somewhat larger
than one of the SM bosons, m = MW ,MZ , compensat-
ing for the suppression by the larger number of couplings.
Calculating exactly which modes are enhanced, and why,
is the main thrust of the paper.

The residual dependence of the decay branching ra-
tios on the parameters of the theory, αic, Λic, and the
infracolor group SU(N)ic, arise from: a) neutral quirko-
nium decay into infraglueballs, b) possible Lyman-alpha
infraglueball transition, and c) Lyman-alpha electromag-
netic transition.

The first issue, neutral quirkonium decay into in-
fraglueballs, is handled by choosing to evaluate “width
ratios” into visible SM particles, rather than the stan-
dard branching ratios of neutral quirkonium decays. This
is because the infraglueballs are expected to be very long-
lived and escape the detector [1], and thus annihilation
to g′g′ is expected to yield no hard SM resonance signal.
The possibility of 3-body decays, going into a pair of in-
fraglueballs as well as a SM particle, is beyond the scope
of this paper.

The second issue, Lyman-alpha infraglueball transi-

tion, can occur if the kinematics of the transition per-
mit it. The energy difference between the n = 2 P state
and the n = 1 S state is (3/32)ᾱ2

icM . The infraglue-
ball mass is of order, but somewhat larger than Λic. For
ᾱic ∼ O(0.1) and Λic ∼ O(1 GeV), the infraglueball
mass is already close to this energy splitting, and so kine-
matic suppression is generic for somewhat larger values
of ᾱic. For smaller values of Λic, presumably accompa-
nied by smaller values of ᾱic, the infraglueball emission
is less kinematically suppressed but has an overall tran-
sition rate that is smaller. In this region of small ᾱic, the
P states are more likely to transition to S states before
annihilating. A different choice of the infracolor group
introduces an order one change to ᾱic, as well as the run-
ning of ᾱic in the Coulombic potential [10]. Since these
changes appear as shifts in the coupling of the Coulom-
bic potential, they can be at least partially absorbed by
a redefinition of ᾱic.

Finally, there is the different dependence on ᾱic (and
αSM) between the Lyman-alpha transition rate versus
the quirkonia decay rates. The Lyman-alpha transi-
tion scales as αSMᾱ

4
ic, whereas the decay rates of the

P states scale as α2
SMᾱ

5
ic through |R′P (0)|2. Hence, there

is a relative suppression of branching and width ratios of
roughly αSMᾱic relative to the Lyman-alpha electromag-
netic transition rate.

Consider two regimes, one in which the Lyman-alpha
transition rate is dominant and the other where it is sub-
dominant to decay rates that are doubly-enhanced. In
the latter regime, the branching and width ratios are
rather insensitive to ᾱic, since the only dependence on
ᾱic enters from the wavefunction. This dependence drops
out, analogous to the S states. In the first regime, how-
ever, the total width is dominated by the Lyman-alpha
transition rate. The width and branching ratios of de-
cay processes scale linearly with ᾱic. But, the regime
where the potential is dominated by infracolor while still
allowing a Coulombic approximation to the bound state
potential only allows for about one order of magnitude
change in ᾱic.

IV. BRANCHING RATIOS AND WIDTH
RATIOS

We now present our results for charged and neutral
quirkonia decay rates. In what follows, we carry out
several numerical computations of branching ratios and
width ratios, using the results from Appendices B and C,
to demonstrate the dominant SM decay channels for the
various bound states of quirkonia.

In the following, we have chosen a specific infracolor
group, N = 2, and infracolor coupling, ᾱic = 0.2. As
we discussed above, the additional relative suppression
factor of the P state decay rates is only one power of ᾱic.
The value ᾱic = 0.2 tends to maximize the possibility
that P states can, at larger quirkonium masses, annihi-
late into SM modes before the Lyman-alpha transition
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occurs.

A. Charged quirkonia

We now discuss the branching ratios of charged quirko-
nia. The analytic results for the decay rates can be found
in Appendix B. Given a final state f , the branching ratio
for f , BR(QQ̄→ f), is

BR(QQ̄→ f) =
Γ(QQ̄→ f)∑
f Γ(QQ̄→ f)

, (14)

where the sum is over all final states.
The charged quirkonium case is particularly simple. As

the system is electrically charged, it cannot decay into
g′g′. Fig. 1 shows the decay branching ratios of charged
quirkonium states. For all states, only the WH partial
width is sensitive to different values of the Higgs mass.
The plots shown for charged quirkonia here are also ap-
plicable to any massive bound states that only decay via
the electroweak SU(2)×U(1) group, with electric charges
Qu = −Qd = 1/2. Note that we only show the summed
width over the massless fermions (2 quark pairs, 3 lepton-
neutrino pairs), as the widths of all massless fermions are
the same (see App. B 4). Also, we only show the decays
for the UD̄ meson. We have checked that the widths for
ŪD decay are the same.

The branching ratios of different bound states are plot-
ted in Fig. 1. For the S states, the WZ partial width
dominates. For P states, radiative transition usually
dominates. For 3P1, the WH width becomes larger than
the Lyman-alpha transition width when the meson mass
is larger than & 600 GeV, provided that the meson is
heavier than the threshold.

B. Neutral Quirkonia

The results for neutral quirkonia are more complicated
than their charged counterparts. Not only that there are
more decay channels, but in some cases the mesons can
decay into infraglue pairs, g′g′, that hadronize into an
infraglueball pair φ′φ′.

1. g′g′

As the mesons are color singlets, only t- and u-channels
contribute to the decay amplitudes of B → g′g′. Then
the decay rate should be proportional to that of B → γγ.
A simple calculation shows that, for an SU(N)ic color
gauge group,

Γ(B → g′g′) =
N2 − 1

4N2

α2
ic

e4Qα
2
em

Γ(B → γγ) (15)

where eQ is the quirk electric charge. Setting N = 3
reproduces the results in [19]. The 3S1 state cannot decay
into g′g′. Its decay into g′g′g′ is given by [4],

Γ(3S1 → g′g′g′) =
(N2 − 1)(N2 − 4)

N2

(π2 − 9)α3
ic

9πM2
|RS(0)|2 .

(16)
This vanishes for the special case SU(2)ic, since three
gluons cannot form a infracolor singlet.

Instead we present our results in terms of a “width
ratio”

WR(QQ̄→ f) =
Γ(QQ̄→ f)∑

f 6=φ′φ′ Γ(QQ̄→ f)
, (17)

Also, for reasons of clarity, we do not present the plots for
the branching ratios when the Higgs mass deviates from
125 GeV. Unless the final states involve Higgs bosons, a
larger Higgs boson mass would only push the correspond-
ing thresholds towards higher meson masses, leaving the
other width ratios mostly unchanged as in the case of
charged quirkonia. However, there is a qualitative change
in the width ratios for the 3P0 state when the Higgs mass
is sufficiently large, which will be discussed below.

2. 1S0 and 3S1

The width ratios for the S states are shown in Figs. 2a-
2b. The dominant decay channels are ZH and tt̄. The
ZH channel receives double enhancement from the lon-
gitudinal Z and the Yukawa coupling between the Higgs
boson and the quirk. Also, the tt̄ channel is enhanced by
the top mass.

The results for the 3S1 state can be discussed more pre-
cisely because the infraglue channel is absent. Even for
values of M not far away from 2mW , the double longitu-
dinal WW mode dominates. Because of Bose symmetry,
the two Z’s cannot be longitudinal simultaneously and
the ZZ mode is suppressed.

3. 1P1

The width ratios are shown in Fig. 2d is dominated
by the Lyman-alpha transition throughout the sub-TeV
range. All other widths contain a single enhancement
factor, from either the longitudinal mode or the quirky
Yukawa.

4. 3P0

The 3P0 width ratios exhibit an interesting feature
when the Higgs mass is larger than 2mW , 2mZ and 2Mt,
where Mt is the top mass. The decay channels WW ,
ZZ, and tt̄ involves an s-channel Higgs boson exchange.
When the meson mass is near the Higgs mass M ∼MH ,

4
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FIG. 1: Decay branching ratios of charged chiral quirkonia in different JPC states. Solid lines are with Higgs mass
MH = 125 GeV, dashed lines with MH = 250 GeV.

the widths are enhanced by the s-channel Higgs reso-
nance. This can be seen in Fig. 3. There, the WW and
ZZ widths have a resonance at M = MH = 250 GeV
when the s-channel Higgs boson is on-shell. The tt̄ width
does not exhibit this behavior because at 250 GeV, the
decay into two top quarks from a single Higgs boson is
kinematically forbidden.

5. 3P1

The branching ratios for the 3P1 state are shown in
Fig. 2e. The ZH channel are doubly enhanced and is
dominant for M & 700 GeV.
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(c) 3P0,MH = 125 GeV
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FIG. 2: Decay width ratios of neutral chiral quirkonia in different JPC states. Solid lines correspond to a Higgs
mass MH = 125 GeV, while dashed lines correspond to MH = 250 GeV. In many instances, there is no difference
between the width ratios for different Higgs masses, and thus the solid lines overlap the invisible dashed lines. For

figure (c), we have presented the choices MH = 125 GeV. We illustrate the difference in decay width ratios changing
to MH = 250 GeV in Fig. 3.

6. 3P2

The channels WW , ZZ and HH are doubly enhanced
and will take over the radiative transition at high meson
mass (& 1 TeV).

V. COMPARISON TO VECTOR-LIKE
QUIRKONIA

Annihilation rates for the case of vector-like quirks in
certain other representations has been calculated in [4,
13]. There is not a general rule that relates the decay
rates of vector-like quirks to chiral quirks. But in certain
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FIG. 3: 3P0 with MH = 250 GeV. The resonance
structure is due to the s-channel Higgs boson.

circumstances one can be obtained from the other, and
vice versa. In this section, we will discuss differences and
similarities of vector-like and chiral quirk decay rates,
and give examples in cases where the decay rates are
related.

We wish to compare our results for chiral quirks to a
related theory with vector-like quirks. The vector-like
theory we consider consists of the doublet Q given before
in Table I, but now we replace[

uc(N̄,1,−1/2)

dc(N̄,1,+1/2)

]
−→ Q′(N̄,2, 0) . (18)

Yukawa couplings, Eq. (1), are not present, and instead
we write the vector-like mass MQQ′ where M = MU =
MD. There are several differences that lead to qualita-
tively different decay widths.

First, the coupling of electroweak gauge bosons to left-
and right-handed quirks are the same – the quirk-W/Z
coupling is a purely vector interaction, and processes
that proceed through the axial vector coupling in the
chiral case are absent for vector-like quirks. As an ex-
ample, consider the decay rate Γ(3S1 → ff̄), for neu-
tral and charged quirkonia. The only diagrams are the
s-channel γ/Z or W . In the neutral case, the only differ-
ence that separates vector-like and chiral is the different
axial-vector and vector coupling of the Z. Therefore,
the expressions for vector-like [4] and chiral [19] are the
same. For the charged case, the axial-vector and vector
couplings are not explicitly written in [4], but their rate is
4 times larger than the chiral case in [19]. This is because
the s-channel W couples to both left and right handed
quirks in the vector-like case, whereas in the chiral case
they only couple to left handed quirks. Therefore, the
decay rate into a fermion-antifermion pair for a charged
3S1 is four times larger than its chiral counterpart.

Second, the quirks do not couple to the Higgs and
the corresponding Goldstone bosons (through the lon-
gitudinally polarized electroweak gauge bosons). Virtual
Goldstone bosons can only appear in the s-channel, and
since the Goldstone bosons are pseudoscalars, they only
contribute to the 1S0 decay rates. Vector-like quirks,

by contrast, do not have couplings to the Higgs or the
Goldstone bosons. In addition, Goldstone bosons can
appear in the final state (appearing as longitudinally po-
larized electroweak gauge bosons). This leads to quali-
tatively different decay rates into gauge bosons for all of
the bound states.

For completeness, we present the width and branching
ratios of vector-like quirkonia in Fig. 4 for neutral quirko-
nia and Fig. 5 for charged. There are striking differences
between the chiral and vector-like cases. The most promi-
nent feature in the vector-like case is that all decay widths
have the same asymptotic behavior at large quirkonium
mass - there are no longitudinal enhancements of W/Z
anywhere. This is expected, as the longitudinal W/Z
asymptotes to the respective Goldstone bosons, which do
not couple to the vector-like quirks in u- and t-channel
quirk-exchange diagrams. Also, the trilinear gauge boson
coupling appearing in s-channel gauge boson exchange
arises from the electroweak gauge structure of SU(2)L
and has no relation to the electroweak breaking mech-
anism. Therefore, one would not expect any enhance-
ments in the decay widths of vector-like quirkonia. With-
out longitudinal enhancements, the Lyman-alpha tran-
sition dominates over all P -state decays for all quirko-
nium masses. Whereas in the chiral case, decay channels
that receives longitudinal enhancements can dominate
the Lyman-alpha transition at large quirkonium masses.

In the low quirkonium mass regime, the overall be-
havior of both vector-like and chiral quirkonia are simi-
lar: P -states predominantly decay via the Lyman-alpha
transition and 3S1 into qq̄. It is interesting to note that
for 1S0, γZ dominates the vector-like quirkonium decay,
whereas γγ is dominant for chiral quirkonia. This is be-
cause the primordial electroweak gauge boson Wµ

3 cou-
ples not just to the left-handed vector-like quirk, but to
the right handed one also! A rough estimate indicates
that this gives a factor of four increase in the γZ rate for
the vector-like case. Indeed, the isospin contribution to
the vector coupling of the Z to the quirks for the vector-
like case is twice as much as that for chiral quirks.

VI. UNDERSTANDING CHIRAL
ENHANCEMENTS

Figures 1 and 2 show that decay processes can be singly
or doubly enhanced by either the Yukawa coupling or the
longitudinal modes of gauge bosons at high quirkonium
masses. A summary of enhancements received in the de-
cay channels can be found in Tables II and III. In this
limit, the Goldstone equivalence theorem applies and the
enhancements in various decay channels can be seen by
the matching of the J, P, and C numbers between the
decay quirkonium state and the final state consisting of
Goldstone/Higgs bosons and/or transverse gauge bosons.
First, we determine the JPC numbers to the final state
particles; 0−+ and 0++ to the Goldstone boson and Higgs
boson, respectively. For photons and transverse W and
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FIG. 4: Decay width ratios of neutral vector-like quirkonia in different JPC states. Solid lines correspond to a Higgs
mass MH = 125 GeV, while dashed lines correspond to MH = 250 GeV. In many instances, there is no difference

between the width ratios for different Higgs masses, and thus the solid lines overlap the invisible dashed lines.

Z, we assign P and C numbers according to the P and C
of the bilinears ψ̄γµψ and ψ̄γµγ5ψ. The photon has JPC

= 1−−, and the W/Z has 1−− for the vector coupling
and 1++ for the axial vector coupling (that is, we absorb
the violation of C and P from the axial vector coupling
into the JPC of the W and Z). For the quirkonia, we
have 0−+ for 1S0, 1−− for 3S1, 1+− for 1P1, 0++ for 3P0,
1++ for 3P1 and finally, 2++ for 3P2.

Next, we write down all the available JPC with differ-

ent orbital angular momentum L between the two final
state particles, and match with the JPC of the quirky
meson to determine which meson decay channels are en-
hanced. As an example, consider Q̄Q → Zγ, where
there are only the t- and u-channel diagrams. Single
enhancement from the longitudinal Z is present in some
meson states. In the limit where the quirkonium mass
M � MZ , the longitudinal Z is equivalent to the corre-
sponding Goldstone boson φ0. The JPC of the φ0γ sys-
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FIG. 5: Same as Fig. 4 but for charged vector-like quirkonia. Only the two JPC states shown here have nontrivial
branching ratios. The state 3S1 cannot decay through two-body decays. The 3P0,1,3 states can only decay

radiatively into S states.

JPC Singly enhanced Doubly enhanced
1S0 WH
3S1 Wγ, WH, WZ
1P1 Wγ, WH, WZ
3P0

3P1 Wγ, WZ WH
3P2 Wγ, WH, WZ

TABLE II: Decay channels that receive enhancements
for charged quirkonia.

JPC Singly enhanced Doubly enhanced
1S0 ZH
3S1 Zγ,ZZ, ZH, γH WW
1P1 Zγ, WW , ZZ, ZH, γH
3P0 WW , ZZ, HH
3P1 Zγ, WW , ZZ ZH
3P2 Zγ, ZH WW , ZZ, HH

TABLE III: Decay channels that receive enhancements
for neutral quirkonia.

tem is determined by combining that of the Goldstone
boson (0−+) and that of the photon 1−−, which gives
1+−. Keeping the total angular momentum J ≤ 2, we
can add orbital angular momentum L into the system,
forming {0−−, 1−−, 2−−} for L = 1, and {1+−, 2+−} for
L = 2. This is captured in Table IV. One sees that, only
the states 1+− and 1−− matches with the existing quirky
meson states 1P1 and 3S1, respectively. One can see from
Appendix C 2, that only the 1P1 and 3S1 states are en-
hanced. One can also see that both of the decay proceed
via the axial vector coupling of the Z. This is because
the φ0f̄f coupling is a pseudoscalar coupling ψ̄γ5ψ, and
this must correspond to the axial vector coupling of the

J = 0 J = 1 J = 2

L = 0 1+−

L = 1 0−− 1−− 2−−

L = 2 1+− 2+−

TABLE IV: JPC of the φ0γ system.

J = 0 J = 1 J = 2

L = 0 0++ 1++ 2++

L = 1 0−+ 1−+ 2−+

L = 2 1++ 2++

TABLE V: JPC of the ZT γ system with vector coupling
of the Z.

Z, ψ̄γµγ5ψ.
We will go further and illustrate that all other meson

states decay to Zγ via the vector coupling and receive
no enhancements with the same procedure. Consider the
final state with a transverse Z and γ, both with JPC =
1−− for the vector coupling of the Z. The JPC of the fi-
nal states are collected in Table V, where one can see that
the 1S0,

3 P0,
3 P1, and the 3P2 states are not enhanced.

The JPC of the final states with an axial vector coupling
can be obtained by flipping the C and P numbers ev-
erywhere in Table V. Then one sees that there are also
contributions with no longitudinal Z enhancements via
the axial vector coupling to the decay widths of 3S1 and
1P1. Indeed, there are terms in the expressions for the
corresponding decay widths that are not enhanced.

The procedure above can explain a large number of
enhancements for different quirkonium decay processes.
However, there are instances where the procedure pre-
dicts leading enhancements in some processes when there
should not have been any. The fictitious leading enhance-
ments predicted by this procedures are: 1S0 → W−T φ

+,
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1S0 → φ+γ, 1P1 → φ+H, 3P0 → W+
T H and {1S0,

3P0} → ZTφ
+.

The 1S0 state are not singly enhanced in two-body
systems consisting of one transverse gauge boson. This
can be seen by tracking the spin along the quirky
fermion line. First, the 1S0 projector is proportional to∑
s1s2

Cs1s21S0
us1 v̄s2 , where Cs1s21S0

is the Clebsh-Gordon co-

efficients corresponding to the 1S0 state, which vanishes
for s1 = s2. In the systems being considered, there is only
one vertex that flips the spin - the fermion-fermion-gauge
boson vertex. The rest are either scalar (Higgs boson) or
pseudoscalar (Goldstone boson) couplings that do not in-
volve a spin flip. Also, one can see that the Dirac spinor
v has an opposite spin compared to the Dirac spinor u
in the relation vs = −2sγ5u−s. Therefore, the 1S0 state
cannot decay into any states consisting of only one trans-
verse gauge boson (with the other outgoing particle being
the Higgs or Goldstone boson) and the 1S0 decay width
cannot be singly enhanced.

VII. DISCUSSION

We have calculated the chiral quirkonium decay rates
for quirks that acquire mass through interactions with
the Higgs boson. While in this paper we have not stud-
ied the production rates of quirks at the LHC, this is
straightforward using standard collider physics tools, and
has been done recently in the literature. For vector-like
quirks with electroweak quantum numbers, the produc-
tion cross section was calculated in Fig. 6 of Ref. [13].
There it was shown that pair production of uncolored
quirks produced through γ/Z exchange has a cross sec-
tion ranging from roughly ∼ 105 to ∼ 10 fb at

√
s = 7

TeV LHC for the quirkonium mass range of 100 to
1000 GeV. We expect that the chiral quirk production
cross sections are very similar in size. Given the spectac-
ular signals that result from quirkonia decay, the discov-
ery of quirkonium resonances can occur quickly. This is
likely to occur well before the detailed properties (spin,
P , C, etc.) of the resonances can be determined.

The particular decay channels not only can tell us
about the constituent quirks’ quantum numbers, but per-
haps even more interestingly, how the quirks acquire
mass. Quirkonia with chiral quirks have longitudinal
and Yukawa enhancements that are absent or highly sup-
pressed in quirkonia with vector-like quirks. In this pa-
per we have demonstrated the striking differences be-
tween the dominant chiral quirkonium decay channels
as compared with vector-like quirkonium decay channels.
This should enable the LHC to easily distinguish whether
quirks are chiral or vector-like from the observation and
branching ratios of the dominant decay channels.

For electrically-charged chiral quirkonia composed of
quirks with the quantum numbers given in this paper,
the state 1S0 decays into WH or tb̄/t̄b overwhelmingly

for quirkonium masses larger than about 250 GeV. Con-
trast this with vector-like quirkonia, where the 1S0 with
the quantum numbers given earlier in the paper, does
not even have two-body decays. Chiral quirkonia in the
3S1 state have WZ is the dominant decay channel. For
vector-like quirkonia, the ff̄ , summed over all flavors of
SM fermions, dominates. We also demonstrated that the
Lyman-alpha transition is dominant in all of the charged
quirkonia P -states, except for 3P1 for chiral quirkonia
when the “doubly-enhanced” WH decay becomes signif-
icant for quirkonium masses & 600 GeV. The Wγ de-
cay deserves more discussion. It was shown in [3] that
the Wγ channel is dominant when their squirk and anti-
squirk pair has low relative velocity, in other words, an
S-state. For our case, the Wγ partial width vanishes due
to our choice of quantum numbers: QU = −QD = 1/2,
where we found the Wγ partial width is proportional to
(QU +QD)2, see Appendix B 1.

For electrically-neutral chiral quirkonia, the dominant
decay channels of 1S0 are ZH and tt̄. Again, contrast this
with vector-like quirkonia where WW or ZZ dominates.
For 3S1, the WW channel dominates for chiral quirko-
nia, versus ff̄ for vector-like quirkonia. For all P -states,
Lyman-alpha emission dominates for vector-like quirko-
nia, whereas for chiral quirkonia there are several decay
channels that can become significant when the quirko-
nium mass is large. In particular, HH can dominate for
3P0, ZH for 3P1, and WW for 3P2.

Indeed, perhaps one of the most interesting decay
channels that we found is the 3P0 decay into two Higgs
bosons, which becomes the dominant decay channel for
quirkonium masses & 500 GeV. This could be striking
signal at LHC, given that the di-Higgs system would re-
construct to an invariant mass peak of the 3P0 state.

Finally, it is tempting to consider applications of our
results to various existing hints at colliders. For instance,
the prominence of the electrically-charged chiral quirko-
nium decay channel, 1S0 → WH is suggestive: chiral
quirkonia with mass M ∼ 300 GeV with some minor
modification of the H decay into jets could easily lead
to the CDF excess in the Wjj signal [21, 22]. The cross
section can be easily adjusted to match the excess, sim-
ply by enlarging the number of infracolors or flavors of
quirks. Given the incredible performance of the LHC
over the past several months, we leave this pursuit to
future work.
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Appendix A: Matrix elements of bound state decays

This section reviews the procedures to evaluate the decay amplitudes of different angular momentum bound states
following the method in [20]. We work in the non-relativistic limit, where the relative momentum of the constituents,
|q| � M , where M is the mass of the meson. We also ignore the contribution to the meson mass from the binding
potential, i.e., we take M = 2mQ, with mQ the mass of the individual quirks.

Calculations of the matrix element involving an incoming bound state and an outgoing free state, 〈X|iT |B〉, are
needed to evaluate different bound state decay rates. This is most conveniently done by writing the bound state as a
superposition of free fermion states with spins (s1, s2) and momenta (p1, p2):

|B〉 = |2s+1lj〉 =
∑
MSz

〈lmssz|jjz〉|lmssz〉

=

√
2

M

∫
d3q

(2π)3

∑
msz

ψlm(q)〈lmssz|jjz〉 ×[∑
s1s2

〈s1,
1

2
, s2,

1

2
|ssz〉

]
|s1p1s2p2〉, (A1)

where ψ is the Schrödinger wavefunction of the bound state. In its rest frame, p1 = Q/2+q, and p2 = Q/2−q, where Q
is the 4-momentum of the meson, and q is the relative 4-momentum of quirks. Then, the quantity <X|iT |s1p1s2p2>=
iv̄s2(p2)Mus1(p1) is the usual fermion-antifermion annihilation matrix element into the outgoing state f . Expanding
the above to the lowest non-vanishing order in q, we found the following decay amplitudes for S and P states,

A(1S0) =

√
N

16πM
RS(0)Tr[M γ5(−Q/ +M)], (A2)

A(3S1) =

√
N

16πM
RS(0)Tr[M ε/ (−Q/ +M)], (A3)

A(1P1) = −i
√

3N

4πM
R′P (0)Tr[

1

2
εµM

µγ5(−Q/ +M) + M ε/
Q/

M
γ5], (A4)

A(3P0) = i

√
N

4πM
R′P (0)Tr[

1

2
M α

(
QαQ/

M2
− γα

)
(−Q/ +M)− 3M ], (A5)

A(3P1) = i

√
3N

8πM
R′P (0)Tr[2M ε/ γ5 − i

2M
εραβδQρMαγβεδ(−Q/ +M)], and (A6)

A(3P2) = −i
√

3N

4πM
R′P (0)Tr[

1

2
Mαε

αβγβ(−Q/ +M)], (A7)

where R(0) and R′(0) are the meson radial wavefunction and its derivative at the origin, respectively.
The mass of each meson is distinct, and in principle the M in each of the above expressions should be replaced with

the mass for that particular bound state. Since we assume ᾱic is perturbative, the differences between bound state
energies is parametrically small, of order ᾱ2

icM . In most instances, one can use our expressions below, substituting
the proper quirkonia mass for M , and computing the rates. For the branching ratio plots we present below, however,
this difference is small.

The quantity Mα = ∂M /∂qα is the derivative of the matrix element with respect to the relative momentum q.
The meson polarizations in the rest frame, εµ for spin-1, and εµν for spin-2, are chosen to be

εµ∓ = (0,∓ 1√
2
,− i√

2
, 0),

εµL = (0, 0, 0, 1),

εαβJz =
∑
M,Sz

〈1M, 1Sz|2Jz〉, (A8)

with Jz ∈ {−2,−1, 0, 1, 2}. The factor of
√
N arises from normalizing the meson as an infracolor singlet, exactly

analogous to what is done with the QCD color factor for quarkonia [19].
The P and C parities of the above angular momentum states are manifest in each of the decay amplitudes above.

For example, with Qµ = (M, 0, 0, 0) in the rest frame, the P and C parities of the bilinear constructed from the
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projector appearing in A(1S0), ψ̄γ5(−Q/ +M)γ0ψ, are − and +, respectively. Thus JPC = 0−+ for 1S0, as expected.
One can check that the other amplitudes give the expected JPC using the same procedure. From Eqs. (A2) to (A7),
we rederived all of the two-body decay rates listed in [19].2

Appendix B: Decay Rates of Charged Quirkonia

Apart from a color factor of N , decay rates of neutral quirkonia that do not involve any gluons are the same as
listed in [19]. The decay rates of charged quirkonia will be discussed in this section.

Charged quirkonia are expected to have larger partial widths than their neutral counterparts. This is because
charged particles do not have a well-defined charge conjugate parity, hence loosening the constraints posed by CP
conservation. Here, we list the partial widths of charged quirky mesons with positive unit electric charge, i.e. QU −
QD = 1, where Q is the electric charge of either the up-type or down-type quirks. The mass ratio squared Ri and the
relative velocity βi,f appearing in the formulas below are defined as

Ri =
m2
i

M2
, and (B1)

βi,j =
√

1 + (Ri −Rj)2 + 2(Ri +Rj), (B2)

respectively, and cW = cos θW is the cosine of the Weinberg angle.

1. W+γ

The charged quirkonium decay widths into W+γ are qualitatively different to the widths of neutral quirkonia into
Zγ. There are two reasons for the differences; the decay into W+γ can go through an s-channel with a W exchange.
The corresponding diagram is absent for Zγ; the photon does not couple to a electrically neutral Z. Another reason is
that the photon couples to quirks of different electric charges in the t- and u-channel diagrams, due to the emission of
a charged W . It is illuminating to write the chiral projection operators as PL,R = (vW ∓aW γ5)/2, with aW = vW = 1,
so that the vector and axial-vector contributions from the W current are manifest. The partial widths into W+γ are

Γ(1S+
0 →W+γ) =

NααW v
2
W

4M2
(QU +QD)2(1−RW )|RS(0)|2, (B3)

Γ(3S+
1 →W+γ) =

NααWa
2
W

12m2
W

(QU +QD)2(1−R2
W )|RS(0)|2, (B4)

Γ(1P+
1 →W+γ) =

NααW
M2m2

W

[a2W (QU +QD)2(1−R2
W ) + v2W (QU −QD)2RW (1−RW )]|R′P (0)|2, (B5)

Γ(3P+
0 →W+γ) =

NααW (1−RW )

M4

[
a2W (QU −QD)2 + v2W (QU +QD)2

(
1 +

2

1−RW

)2]
|R′P (0)|2, (B6)

Γ(3P+
1 →W+γ) =

NααW
2M2m2

W

[
a2W (1−RW ) + 4v2W (QU +QD)2R2

W

1 +RW
1−RW

]
|R′P (0)|2, (B7)

Γ(3P+
2 →W+γ) =

NααW (1−RW )

10M2m2
W

[
a2W (QU −QD)2(3 + 4RW ) +

4v2W (QU +QD)2RW (6 + 3RW +R2
W )

(1−RW )2

]
|R′P (0)|2.

(B8)

Interestingly, all but one term in Γ(3P+
1 → W+γ) are proportional to either the hypercharge Y = (QU + QD)/2 or

the isospin T3U = (QU −QD)/2 of the quirks.

2. W+H

In the limit degenerate quirk masses, their coupling constants to the Higgs boson are the same. As a consequence,
the decay matrix elements has the same form as that for the decay into ZH, and can be obtained by the replacements

2 We found a relative sign difference between the two terms in
the amplitude A(3P1). We attribute this to our definition of

ε0123 = 1.
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gZ → g/
√

2 and vector and axial vector couplings by 1/2; a, v → 1/2. This gives a conversion factor of 1/(2
√

2)
converting the ZH matrix elements to WH:

MW+H =
1

2
√

2
MZH . (B9)

Therefore, the partial widths into W+H, have exactly the same form as those for ZH, aside from a factor of 1/8.
The analysis for ZH in [19] applies to W+H as well. The partial widths are

Γ(1S+
0 →W+H) =

Nα2
Wβ

3
WH

32M2

1

R2
W

|RS(0)|2, (B10)

Γ(3S+
1 →W+H) =

Nα2
WβWH

384

M2

m4
W

(
8RW [(1−RW )2 +RH(1− 3RW )]2

(1−RW )2(1−RH −RW )2

+
[R2
H(1− 3RW )− 2RH(1−RW (2 +RW )) + (1−RW )(1−R2

W − β2
WH)]2

(1−RW )2(1−RH −RW )2

)
|RS(0)|2,

(B11)

Γ(1P+
1 →W+H) =

Nα2
Wβ

3
WH

4M2m2
W (1−RH −RW )2

|R′P (0)|2, (B12)

Γ(3P+
0 →W+H) = 0, (B13)

Γ(3P+
1 →W+H) =

Nα2
WβWH

8m4
W

(
2[1−RH +RW ]2[1 +RW (2−RH +RW )]2

(1−RH −RW )2(1−RW )2

+RW

[
4RW

1−RW
+
β2
WH − 4(1−RH −RW )

(1−RH −RW )2

]2)
|R′P (0)|2, (B14)

Γ(3P+
2 →W+H) =

3Nα2
Wβ

5
WH

40M2m2
W (1−RH −RW )4

|R′P (0)|2. (B15)

3. WZ

Notice that double longitudinal modes are allowed from the decay of a charged quirkonium in the 1S0 state. This
is impossible for the neutral quirkonium case, where it decays into ZZ or WW . To see this, the 1S0 state has
JPC = 0−+, but at zero angular momentum, the double longitudinal state has JPC = 0++. The decay into double
longitudinal modes for neutral quirkonia in 1S0 is forbidden by CP conservation. For charged states, the charge
parity is irrelevant, and the decay into double longitudinal mode is allowed by CP conservation. Naively, one would
expect the 1S0 decay rate is longitudinal from appearance of the 1/(RZRW ) term. However, due to the Goldstone
s-exchange, at large quirkonium mass M the decay rate vanishes.
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Γ(1S+
0 →W+Z) =

NαWαZβWZ

32M2

(
1− c2WRZ

RW

1

1 +RW −RZ

)2(
8

(1−RW −RZ)2
+

1

RWRZ

)
|RS(0)|2,

(B16)

Γ(3S+
1 →W+Z) =

NαWαZβ
3
WZ

64M2

1

(1−RW )2(1−RW −RZ)2

{
8c4WR

2
Z

+2(1−RW − 2c2WRZ)2
(

1

RW
+

1

RZ

)
+

1

RWRZ
(1−RW − c2WRZ(1 +RW +RZ))2

}
|RS(0)|2, (B17)

Γ(1P+
1 →W+Z) =

NαWαZβWZ

4M4(1−RW −RZ)2

{
(1 +RW −RZ)2

RW
+

(1−RW +RZ)2

RZ

+4

(
1− c2Wβ

2
WZ

1−RW −RZ

)2}
|R′P (0)|2, (B18)

Γ(3P+
0 →W+Z) =

NαWαZβ
3
WZ

M4(1−RW −RZ)4
[1− c2W (1−RW +RZ)]2|R′P (0)|2, (B19)

Γ(3P+
1 →W+Z) =

NαWαZβ
3
WZ

16M4(1−RW −RZ)2

{
32c4WR

2
Z

(1−RW )2

+
2

RZ

[
1 +

2RZ
1−RW −RZ

−
8c2WRZ

(
1− RZ

2(1−RW )

)
1−RW −RZ

]2
+

2

RW

[
2c4WRZ

(
1 +

2RW +RZ
1−RW

)2

+

(
1 +

2RW
1−RW −RZ

− 2c2W (1− 2RZ
1−RW

)

)2]
}
|R′P (0)|2 (B20)

Γ(3P+
2 →W+Z) =

NαWαZβ
3
WZ

40M4(1−RW −RZ)4

{
16[1− c2W (1−RW +RZ)]2

+
3

RZ
[1−RW +RZ − 4c2WRZ ]2

+
3

RW
[1 +RW −RZ − 2c2W (1−RW −RZ)]2

}
|R′P (0)|2.

(B21)

4. fuf̄d

Decays into two fermions only proceed via the s-channel exchange of W+. The non-zero widths with outgoing
fermion masses m1,2 are

Γ(1S+
0 → ud̄) =

Nα2
Wβud

16M2

(R1 −R2
1 +R2 + 2R1R2 −R2

2)

R2
W

|RS(0)|2, (B22)

Γ(3S+
1 → ud̄) =

Nα2
Wβud

48M2

2−R1 −R2
1 −R2 + 2R1R2 −R2

2

(1−RW )2
|RS(0)|2, (B23)

Γ(3P+
1 → ud̄) =

Nα2
Wβud

2M4

2−R1 −R2
1 −R2 + 2R1R2 −R2

2

(1−RW )2
|R′P (0)|2. (B24)

As expected, the 1S0 partial width is proportional to m2
f/M

2, corresponding to a chirality flip on the outgoing fermion
line.
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Appendix C: Decay Rates of Neutral Quirkonia

This section summarizes the decay rates of neutral quirkonia. The decay rates differ with [19] by just a factor of
2/3 due to a different color group. We also attempt to rewrite the decay rates so that the origins of the terms in
the expression are manifest. In the expressions below, a t-channel quirk exchange with outgoing particles i and j
corresponds to the factor (1−Ri−Rj)−1, with Ri = m2

i /M
2, and M is the quirkonium mass. An s-channel diagram

exchanging particle φ corresponds to (1−Rφ)−1.

1. ff̄

The decays into a fermion-antifermion pair, only the s-channel γ, Z and Higgs diagram contribute. The decay of
the 1S0 state requires a chirality flip on the outgoing fermion line, resulting in the dependence on the fermion mass
squared, M2

f , in its decay rate - similar to pseudoscalar decay.

Γ(1S0 → ff̄) = 8Nα2
Za

2
fa

2
Qβf

m2
f

m4
Z

|RS(0)|2, (C1)

Γ(3S1 → ff̄) =
4Nα2

EMβf
3M2

{
(1 + 2Rf )

(
eQef +

vfvQ
c2W s

2
W (1−RZ)

)2

+
a2fv

2
Qβ

2
f

c4W s
4
W (1−RZ)2

}
|RS(0)|2, (C2)

Γ(1P1 → ff̄) = 0, (C3)

Γ(3P0 → ff̄) =
9Nα2

Zβ
3
f

8M2(1−RH)2
m2
f

m4
Z

|R′P (0)|2, (C4)

Γ(3P1 → ff̄) =
32Nα2

Za
2
Qβf

M4(1−RZ)2
[a2fβ

2
f + (1 + 2Rf )v2f ]|R′P (0)|2, (C5)

Γ(3P2 → ff̄) = 0, (C6)

where M is the quirkonium mass, αZ = αEM/(c
2
W s

2
W ), cW and sW are the cosine and sine of the Weinberg angle,

respectively, ai = T3i/2 and vi = ai − eis2W are the axial-vector and vector couplings of the Z to fermion i, with

i = {Q, f} for the quirk and the outgoing fermion, respectively, Rj = m2
j/M

2, and βf =
√

1− 4Rf is the relative
velocity between the two outgoing fermions.

2. Zγ

Only the t-channel diagram contributes decays into Zγ,

Γ(1S0 → Zγ) =
8NαEMαZe

2
Qv

2
Q

M2
(1−RZ)|RS(0)|2, (C7)

Γ(3S1 → Zγ) =
8NαEMαZe

2
Qa

2
Q

3m2
Z

(1−R2
Z)|RS(0)|2, (C8)

Γ(1P1 → Zγ) =
32NαEMαZe

2
Qa

2
Q

M2m2
Z

(1−R2
Z)|R′P (0)|2, (C9)

Γ(3P0 → Zγ) =
32NαEMαZe

2
Qv

2
Q

M4(1−RZ)
(3−RZ)2|R′P (0)|2, (C10)

Γ(3P1 → Zγ) =
64NαEMαZe

2
Qv

2
Q

M2m2
Z(1−RZ)

(1 +RZ)R2
Z |R′P (0)|2, (C11)

Γ(3P2 → Zγ) =
64NαEMαZe

2
Qv

2
Q

5M2m2
Z(1−RZ)

(R2
Z + 3RZ + 6)|R′P (0)|2, (C12)

where the definitions of various quantities can be found in the paragraph below Eq. (C6).
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3. W+W−

Γ(1S0 →W+W−) =
Nα2

Wβ
3
W

8M2(1− 2RW )2
|RS(0)|2, (C13)

Γ(3S1 →W+W−) =
NM2α2

Wβ
3
W

48m4
W

{
RW (2−RW )

(1− 2RW )2
− 4RW (5 + 6RW )

1− 2RW

(
eQs

2
W +

vQ
1−RZ

)
+4(1 + 20RW + 12R2

W )

(
eQs

2
W +

vQ
1−RZ

)2}
|RS(0)|2, (C14)

Γ(1P1 →W+W−) =
3Nα2

WβW
8M2m2

W (1− 2RW )2

{
1 + β2

W + 2RW

(
1 +

β2
W

1− 2RW

)2}
|R′P (0)|2, (C15)

Γ(3P0 →W+W−) =
Nα2

WβW
4m4

W

{[
1

1− 2RW

(
1− 3RW +

β2
WRW

1− 2RW

)
− 3

1−RH
(
1

2
−RW )

]2

+2R2
W

[
1

1− 2RW

(
1− β2

W

1− 2RW

)
− 3

1−RH

]2}
|R′P (0)|2, (C16)

Γ(3P1 →W+W−) =
Nα2

Wβ
3
W

32m2
W

{
[32R2

W + (3− β2
W )]2

(
1

1− 2RW
− 1

1−RZ

)2

+4RW

[(
3− 4RW

(1− 2RW )2
− 4

1−RZ

)2

+
β4
W

(1− 2RW )4

]}
|R′P (0)|2, (C17)

Γ(3P2 →W+W−) =
Nα2

WβW
40m4

W (1− 2RW )2

{(
1− 2RWβ

2
W

1− 2RW

)2

+6RW

[
1− 2RWβ

4
W

(1− 2RW )2
+

(
1− β2

W

1− 2RW

)2
]

+8R2
W

[
6 +

(
1− β2

W

1− 2RW

)2
]}
|R′P (0)|2, (C18)

where αW = αEM/s
2
W , βW =

√
1− 4RW is the relative velocity of the two W ’s, eQ, vQ, and aQ are the electric charge,

vector and axial-vector couplings to the Z of the quirk, respectively, and RW = m2
W /M

2.
4. ZZ

Γ(1S0 → ZZ) =
4N(a2Q + v2Q)α2

Zβ
3
Z

M2(1− 2RZ)2
|RS(0)|2, (C19)

Γ(3S1 → ZZ) =
8Na2Qv

2
Qα

2
Zβ

5
Z

3m2
Z(1− 2RZ)2

|RS(0)|2, (C20)

Γ(1P1 → ZZ) =
32Na2Qv

2
Qα

2
Zβ

3
Z

M2m2
Z(1− 2RZ)2

|R′P (0)|2, (C21)

Γ(3P0 → ZZ) =
Nα2

ZβZ
32m4

Z

{(
32a2Q −

3− 6RZ
1−RH

−
64R2

Zv
2
Q

(1− 2RZ)2

)2

+8R2
Z

(
3

1−RH
−

32RZv
2
Q

(1− 2RZ)2
−

8(3− 4RZ)(a2Q − v2Q)

(1− 2RZ)2

)2}
|R′P (0)|2, (C22)

Γ(3P1 → ZZ) =
16Nα2

Zβ
5
Z

M2m2
Z(1− 2RZ)2

(
2RZv

2
Q

1− 2RZ
− a2Q

)2

|R′P (0)|2, (C23)

Γ(3P2 → ZZ) =
16Nα2

ZβZ
5m4

Z

{(
a2Q + v2Q

4R2
Z

(1− 2RZ)2

)2

+
3RZ

(1− 2RZ)2

(
a2Q + v2Q

2RZ
1− 2RZ

)2

+(v2Q + a2Q)2
4R2

Z

(1− 2RZ)2

(
3 +

2R2
Z

(1− 2RZ)2

)}
|R′P (0)|2, (C24)

16



where βZ =
√

1− 4RZ is the relative velocity between the Z’s. The definitions of other quantities can be found
below Eq. (C6).

5. ZH

Γ(1S0 → ZH) =
Nα2

Za
2
QM

2β3
ZH

4m4
Z

|RS(0)|2, (C25)

Γ(3S1 → ZH) =
Nα2

Zv
2
QβZH

6m2
Z

{(
1−RH +RZ
1−RH −RZ

− 2RZ
1−RZ

)2

+
RZ
2

(
1−RH +RZ

1−RZ
− 2

1−RH −RZ

)2}
|RS(0)|2,

(C26)

Γ(1P1 → ZH) =
2Nv2Qα

2
Zβ

3
ZH

M2m2
Z(1−RH −RZ)2

|R′P (0)|2, (C27)

Γ(3P0 → ZH) = 0, (C28)

Γ(3P1 → ZH) =
2Na2Qα

2
ZβZH

m4
Z

{
(1−RH +RZ)2

(
RZ

1−RZ
− 1

1−RH −RZ

)2

+8RZ

(
RZ

1−RZ
− 1

1−RH −RZ
− β2

ZH

4(1−RH −RZ)2

)2}
|R′P (0)|2, (C29)

Γ(3P2 → ZH) =
3Na2Qα

2
Zβ

5
ZH

5M2m2
Z(1−RH −RZ)4

|R′P (0)|2, (C30)

6. γH

Γ(3S1 → γH) =
Ne2QαEMαZ(1−RH)

6m2
Z

|RS(0)|2, (C31)

Γ(1P1 → γH) =
2NeQ2αEMαZ(1−RH)

M2m2
Z

|R′P (0)|2, (C32)

(C33)

7. HH

Γ(3P0 → HH) =
Nα2

ZβH
32m4

Z

(
9RH

1−RH
− 6

1− 2RH
+

β2
H

(1− 2RH)2

)2

|R′P (0)|2, (C34)

Γ(3P2 → HH) =
Nα2

Zβ
5
H

80m4
Z(1− 2RH)4

|R′P (0)|2. (C35)
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